最近组了一台4060Ti 16G的电脑,打算用来做GPU服务器,记录一下我的配置过程。
安装nvidia驱动
sudo apt install nvidia-driver-570-server sudo apt install nvidia-utils-570-server
安装docker
export DOWNLOAD_URL="https://mirrors.tuna.tsinghua.edu.cn/docker-ce" curl -fsSL https://get.docker.com/ | sh
安装nvidia-container-toolkit
参考这个 https://mirrors.ustc.edu.cn/help/libnvidia-container.html
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \ && curl -s -L https://mirrors.ustc.edu.cn/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \ sed 's#deb https://nvidia.github.io#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://mirrors.ustc.edu.cn#g' | \ sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo nvidia-ctk runtime configure --runtime=docker sudo systemctl restart docker
部署comfyui环境
这里我把模型和一些数据都放在宿主系统,然后映射到容器里。
mkdir comfyui_data mkdir comfyui_data/user mkdir comfyui_data/input mkdir comfyui_data/output mkdir models sudo docker create -it --name comfyui_0 -p 8188:8188 -v comfyui_data:/comfyui_data -v models:/comfyui_models --gpus all ubuntu:latest
进入容器,下面是在容器内的操作。其中comfyui的clone我使用的是国内的镜像。
python3 -m venv comfyui_venv . comfyui_venv/bin/activate pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128 git clone https://jihulab.com/hanamizuki/comfyui cd comfyui git checkout v0.3.41 pip install -r requirements.txt
删掉models等目录,然后创建软链接,指向从宿主映射过来的目录。
ln -s /comfyui_models ./models ln -s /comfyui_data/input ./input ln -s /comfyui_data/output ./output ln -s /comfyui_data/user ./user
开始运行,目前还没尝试别的参数。
python3 ./main.py --listen